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* ABSTRACT
Title: Mathematical Model Predictions and Optimization Study of the Gamma-
Ray Atmospheric Dengity Sensor

Authors: D, R, Whitaker and R. P. Gardner

Mathematical models were previously derived to study the response of a
gamma-ray backscatter sensor for atmospheric density measurements., These models,
developed for a cylindrically symmetrical geometry have been adapted to three-
dimensional models having more general application. The models were then
integrated with a multivariable search routine to optimize a sensor design for
specific missions, Optimum design parameters for a Mars atmosphere density

measurement were calculated.
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1, INTRODUCTION

The gamma-ray scattering technique for measuring the atmospheric density
surrounding space vehicles has been studied and developed in several experimental
and theoretical programs (1,2,3,4) funded by NASA over the past few years,
Results of these studies indicate that this technique is feasible and has many
advantages. Among these advantages are: (1) fast response time, (2) all gauge
components can be installed completely within the space vehicle, (3) large
effective sample volume, (4) 1ine;r response for densities equal to or less
than that at sea level on Earth, and (5) the response is negligibly affected
by atmospheric composition or shock waves when the gauge is properly designed,

The primary problem associated with this technmique was a high noise level
that limited the low-density measurement range of this technique. The source

(4)

of this noise has been identified as the multiple streaming of gamma-rays and
some beta-particle-produced bremsstrahlung from the radioisotope source down

the space vehicle walls, Mathematical modeling and experimental studies of

this phenomenon have been successfully employed to the extent that the effect

of the important parameters governing this source of noise can be assessed.
Appropriate gauge and radioisotope source designs that will minimize this

noise level for any given set of design restraints imposed by a particular
atmospheric density measurement can now be made with the aid of the mathematical
models,

In previous work under Contract No, NAS1-5467, theoretical, mathematical
models were derived to predict the performance, identify problem areas, and
explain the data taken on two flight tests of a gamma-ray scatter gauge. These
models were cylindrically symmetrical with a source, conical shield, and a
cylindrical scintillation detector mounted on the major axis inside a cone-
shaped rocket., Predictions from these models were that the gauge response was

linear with atmospheric density, independent of atmospheric composition if



gamma-ray energies larger than 0.1 Mev are employed, affected by atmospheric
density as far as 10 meters from the rocket, and independent of shock wave

perturbations that are likely to be encountered,

In the present Contract No. NAS1-7046 the work was divided into two
phases with the decision to proceed with Phase II contingent on the results of

Phase I. Phase I was an experimental verification of the symmetrical models

3

described in an earlier report and an optimum source study. Results of this

1 (4} and therefore the decision to proceed with

work verified the models quite wel
Phase II of this contract was made,

This report presents the results of Phase II of Contract No, NAS1-7046,

This work was divided into three tasks, Since an atmospheric density measurement
of interest to NASA is that on Mars, the symmetrical models had to be adapted

to the non-symmetrical geometry of a Mars atmosphere sensor, This represented
the first task of this effort. The second task consisted of designing and
testing a master computer program for carrying out a multivariable search of
design parameters., Task 3 consisted of running the completed program to obtain
optimum design parameters for a Mars atmosphere gauge,

An additional task was added during the Phase II work because the Phase I
effort had indicated that the buildup factor necessary for correcting the two-
dimensional model predictions of wall streaming was too complex to determine
generally by simple correlations with the limited amount of data taken in Phase I.
This task consisted of investigating the use of the Monte Carlo technique to

determine the multiple scattering of gamma rays down the vehicle walls,



2, DISCUSSION OF APPROACH

The Phase I1 work was divided into several tasks as discussed in the
Introduction. These tasks are quite interrelated since the final objective of the
present program is to use computer programs to optimize a Mars atmosphere gauge.

2.1 Conceptual Design Optimization with Mathematical Models

Historically, optimizations with mathematical models have been used
extensively in the field of economics, military tactics, and other traditional
operations research topics. Recently, applications of these techniques have
been made to the optimization of industrial processes. The application of these
techmiques to the design of measurement devices such as the present application
to gamma-ray scatter gauges for atmospheric density measurement is new,

Generally, optimizations with mathematical models involve describing
the phenomenon of interest with a mathematical model or models, These models
should be capable of predicting the effect of changes in the parameters that are
pertinent to the phenomenon, A single desired criterion is established that
must be maximized (or minimized) to obtain optimum performance. Various
combinations of the pertinent adjustable parameters are used in the mathematical
model or models and the optimum criterion is calculated, The particular set of
values of the adjustable parameters that maximize (or minimize) the optimum
criterion represent the optimum design for the phenomenon being investigated,
Various formalized procedures are utilized to establish the "search'" pattern that
will insure that a true maximum (or minimum) is found with the most efficient
computational effort,

It is helpful at this point to examine this optimization procedure in
terms of the separable parts and how they are interrelated., Figure 2-1 is a
schematic diagram of the optimization procedure. There are six separable parts of
the optimization procedure. The "search routine' is the heart of the procedure

and is shown in the center, According to the problem "constraints" which are fed



into the search rountine (step 1), values of the "adjustable parameters" are
selected (step 2) and inserted into the "mathematical model" (step 3). The
mathematical model calculates a "wvalue of the criterion" (step 4) and this value
is returned to the search routine (step 5), This entire process is repeated
until the search routine decides that a maximum (or minimum) value of the
criterion has been reached. At this point the search routine lists the "optimum
values of parameters" (step 6). The specific problems associated with the
application of this general procedure to the optimum conceptual design of a
gamma-ray scatter gauge for measuring the atmospheric density of Mars from a
Voyager Probe/Lander is discussed in the following subsections of Sec. 2,

2,2 Application to Gamma-ray Scatter Atmospheric Density Gauges

A discussion of the mathematical model optimization procedure as shown
in Fig. 2-1 is given in this subsection to elucidate the more specific problem
of applying this technique to the optimum conceptual design of gamma-ray
atmospheric density gauges. The "optimum values of the parameters' part is self
explanatory and requires no discussion. The obvious criterion for this particular
case is the minimum noise-to-signal ratio of the gauge response. The search
routine chosen is the Rosenbrock (5) method which is described in more detail
in Sec, 4.

The mathematical models used here were modified from the earlier
symmetrical models because the proposed Mars atmosphere gauge will not have
symmetry about the line conmecting the center of the source and center of the
detector. This modification of the models to the three-dimensional case
represented a significant effort in the present program and will make the models
more generally applicable to future problems.

Figure 2~2 schematically shows the major components of a gamma-ray
scatter gauge for the measurement of atmospheric density. These include: (1) a

source of electromagnetic radiation, (2) a direct transmission shield, (3) a



detector, (4) the electronic components necessary to process the detector response,
and (5) the walls of the container that houses all the gauge components, The

last two of these components, electronics and container walls, are essentially
fixed by the gauge and space vehicle design and are not usually adjustable, The
adjustable parameters are primarily concerned with the first three items; the
source, the shield, and the detector.

The source of electromagnetic radiation can be either a radioigotope
or a machine source. If a radioisotope source is chosen (as in the studies to date),
it must be selected on the basis of energy emitted, half-life, specific activity,
and availability.

The design of the direct transmission shield depends directly on the
radiation source and detector that are chosen. Usually one desires to minimize
the total weight of the shield while still eliminating most of the radiation
that penetrates the shield and goes directly to the detector. Besides weight
considerations, one would also like to optimize the shape and position of the
shield for most efficiency.

The detector should be chosen for optimum efficiency., The size and
shape of the detector for the present case would be determined on the basis of
the optimum signal-to-noise ratio., This depends to a large extent on what
source energy and shield design are used. Since the gauge response is almost
a direct function of the detector face area, this would indicate that a large
detector is desirable, However, the noise due to source direct transmission and
cosmic radiation also increases with detector size, indicating a conflicting
desirability for a small detector. This is a specific, qualitative example of
why one expects to find an optimum design for the gauge. The type of detector
(viz. organic crystal, inorganic crystal, proportional gas, etc.) depends upon

the overall efficiency for the source gamma-ray energy chosen, the required



ruggedness, dependability, and insensitivity to the probable changes in ambient
temperature and pressure,

Besides these design considerations connected directly to the basic
components of the gauge, one must also consider such things as: source-detector
distance, collimation of source and detector, and discriminator settings., It is
obvious from the large number of adjustable parameters and their complicated and
highly interrelated effect upon the signal and noise that a search routine used
with mathematical models would be a useful method of determining the optimum
conceptual design of a gauge.

Constraints are imposed by the specific measurement required., The
planned entry speed establishes the necessary gauge response speed or time
constant, The expected atmospheric density in conjunction with the gauge time
constant determines the source intensity. The time required to reach the
destination in conjunction with the maximum allowable initial source intensity
determines the lower limit on the source half-life,

The mathematical models required should be capable of relating the
predicted signal and noise of a gauge for any combination of the pertinent
adjustable parameters. The models should be as accurate as possible consistent
with reasonable computation times on a high speed computer,

2.3 Mathematical Model Requirements

To optimize the signal-to-noise ratio one must have models for the
signal and all sources of noise in terms of the adjustable parameters previously
discussed. By definition, there is only one source of signal, but there are
several possible sources of noise. These include: (1) multiple scattering down
the space vehicle walls, (2) cosmic radiation, (3) source radiation transmitted
through the shield, (4) natural radioactivity in the space vehicle and on Mars,
‘and (5) electronic noise., The last two sources of noise are omitted here as they

are probably negligible in relation to the others for the present case. They



could easily be included for other proposed measurement optimizations., Mathematical
models for the sighal and each of the three sources of noise are derived and dis-
cussed in Sec. 3,

In addition to optimizing the signal-to-noise ratio, it was desirable
to check the accuracy of the mathematical models by comparing them with the two-
dimensional models. Signal response as a function of atmospheric demnsity, source
energy, and shock wave pertubations for the three-dimensional model were of
interest., Also, detector responsé as a function of distance from the source and
a plot of the number of gamma rays scattered and eventually detected at any
distance from the source and detector were desired, Wall streaming response as
a function of gamma-ray energy was also of interest.

Comparison of these results with the two-dimensional results would

indicate which parameters should be optimized for the final gauge design.

2.4 Application to Gauge for Martian Atmospheric Density Measurement
The specific constraints imposed by the proposed measurement of the
Martian atmospheric density can be inferred from a preliminary study made by

(6

Giannini Controls Corporation First of all the proposed Mars gauge is not
symmetrical, as already discusséd. The other pertinent constraints are only
briefly discussed here and no effort is made to thoroughly substantiate them.
For a more detailed discussion of these constraints refer' to Ref, 6,

Spacecraft weight restrictions and state~ef=the-art development of
machine sources of electromagnetic radiation indicate that the use of a radioisotope
source is desirable for this application., The expected atmospheric density of the
Martian atmosphere and the design vehicle entry speed combine to require a source
intensity (delivered to Mars) of 20 curies, assuming one gamma ray is emitted
per source disintegration, On the bagis of efficiency and ability to withstand

the expected ambient conditions, the type of detector chosen is a scintillation

crystal with photomultiplier. The detector shape is to be a right-circular



cylinder so that state-of-the-art photomultiplier tubes can be efficiently matched
to the detector. A schematic drawing of the gauge with pertinent nomenclature
is given in Fig. 2-2. The important points to note are that the source and
detector are the same distance from the vehicle wall and the wall is considered
to be flat with no curvature. These assumptions were made to simplify the
mathematical models. They do not seriously affect the generality of the program.
Shields are shown at both the source and detector, Collimation of source and
detector is not shown since it could be accomplished by many different
configurations.,

Derivations and discussions of the three-dimensional mathematical models

are given in the next section,



3. THREE-DIMENSTONAL MATHEMATICAL MODELS

Mathematical models of the signal and the three sources of noise are
derived and discussed separately in this section. In addition, a model for
calculating the solid angle subtended by the circular face of a detector from
a point at any position and a model for calculating the detector efficiency
for any gamma-ray energy and right-circular cylindrical detector are derived
and discussed, since these last models were required for use with each of the
three~dimensional models for signal and noise,

3.1 Derivation and Discussion of Models

3.1.1 Signal Responge Model

A schematic diagram with pertinent nomenclature for the
derivation of the signal response model is given in Fig. 3-1. A somewhat
unusual coordinate system is used to coincide with the desired collimation limits,
This coordinate system uses two of the conventional spherical coordinates, r and
®, but replaces the usual 8 by ¢, which is the angle between the z Cartesian
coordinate axis and the r line superimposed on the y~z plane. The origin is
taken as the center of the source. Cartesian coordinates are often used in
the derivations as well as the r,®,{ coordinates, All three coordinate systems
are shown in Fig. 3-1., The relationships between the various coordinate systems
are given in Table 3-1,

Figure 3-2 shows the desired integration limits on the coordinate
system used in this study. The limits of @ which are in the x-y plane are ®min
and Qmax' The limits on ¢ in the y-z plane are assumed to be symmetrical and
equal to ¢c. The maximum limit on r is taken as L The minimum limit on r,
Toin (®, ), depends on the values of | and ¢ and is taken as the intersection

m

of the 0, line with the outer face of the space vehicle wall,



The signal response model is derived by identifying separable
parts of each gamma-ray path that originates from the source and is scattered by
the surrounding atmosphere into the detector, All possible paths are obtained by
integrating on r, &, and § according to the limits just established and shown
in Fig. 3-2, This model assumes that only gamma rays scattered once are detected.

(3,4) and would be

This has been shown to be a good assumption in the past
expected to be an even better assumption for the present case $ince the atmosphere
of interest is even less dense than that previously considered., This means that
multiple scattefing is even less likely.

The first probability, P., is the probability that any gamma-ray

1
emitted from the source will be emitted within the differential angles d® and dy
about the mean angles & and { and will reach the distance r without being attenuated,

From this description P, is seen to be:

1
=4 sing do - - -t -
P o 5 exp [ pt[r rmin(®,¢)] Wt (2,0)] (3.1.1-1)
where e is the total attenuation coefficient of the

atmosphere, in cm ~,

t% (0,f) is the wall thickness through which the gamma-ray
must pass when it is traveling in the direction
® and ¢, in cm,

r is the distance from the source, in cm,

and My, is the attenuation coefficient of the wall, in cm-l°
In the studies reported here the u% term has been assumed to be one-half of the
true value since it is comprised almost entirely of the Compton scattering
probability., This assumes that even if a large number of gamma-rays are scattered
by the wall, only that half of them that are scattered at angles of n/2 or larger

are lost as potential signal producers. (The low-energy gamma rays of concern

in this study scatter essentially symmetrically about the n/2 plane so that half

10
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of the scatters are at angles greater than n/2 and subsequently are lost.) The He

term is taken as the sum of the Compton scattering and photoelectric probabilities
for all the components of the atmosphere, The probability for pair production is

not considered since this probability is negligible for gamma-ray energies less

than about 2 Mev. This atmospheric attenuation coefficient is given by

n
he = NyPo By 3y
- -1
tNp T w/h e (3.1.1-2)

where N, is Avogadro's Number, 6.025 x 1023 atoms/ g-atom,
p is the atmospheric density, in g/cm3,
o is the total Compton scattering probability per electron,

. 2
in cm”/electron,

v, is the weight fraction of element i,

Zi is the atomic numger of element i,

Ai is the mass number of element i,

Tai is the photoelectric probability per atom of element i,

in cmz/atom,
and n is the number of elements present in the atmosphere.
The M, term is identical to My except that the elements within the space yehicle

wall are summed.

(8)

The total Compton scattering probability per electron is given by Evans as:
. (3.1.1-3)
e on 2 Yl+o | 20+ _ 1 1 _ 1+ 3 2
= Zﬂro { Q? 1T 20 o In(l + 20) | + %0 In(l + 200) (T 205)2 cm /electron

11



where r, is the classical electron radius, 2.818 x 10-13 cm,

and o 1is the gamma-ray energy in Mev divided by the rest-mass
energy of an electron (0.511 Mev).

The second probability, P, is taken as those gamma rays already

2

described by Pl that are scattered within the differential distance dr at mean

distance r to within the solid angle subtended by the detector.

92 91
P, =0/, (do/d6 ) de-[ = (do/de)de] p, dr F (3.1.1-4)
where 9, is the angle between the 0,§ line and a line drawn

from r,0,§ to the nearest point on the

detector face (r = d~R, & = 0, § = 0),

2 is the angle between the ®,} line and a line
drawn from r,0,§ to the farthest point on
the detector face (r = d+R, © = 0, § = 0),

Pe is the electron density of the surrounding atmos-

phere, in electrons/cm?,
(dde/de) de is the differential probability per electron
that a gamma-ray with original direction
6 = 0 will scatter within the differential
angle d6 at mean angle 6 in cmz/electron,
and F is the solid angle subtended by the circular
detector face divided by the total solid

angle between 91 and 92.

The F term consists of the detector solid angle model derived and discussed in

Sec. 3,1.6 divided by the solid angle between 91 and 92. it igs not discussed

12



further here. Equation 3.1,1-4 can be approximated well when 61 -92 is small by:

_ 2 . E , 2 E E . 2
P2 =mur_ sin ea ( s/Eo) [ s/EO + o/ES sin ea ] (61 92) pedr F (3.1.1-5)

where r, is the classical electron radius, 2.818

x 10713 cm,
Ga is the arithmetic average of 61 and 6,,
E  is the scattered photon energy, in Mev

and Eo is the original photon energy, in Mev,

The scattered and original energies are related by

E
o

s 1+ (E_70.511) (1-cos 6_) (3.1.1-6)

E

The third probability, PS’ is taken as those gamma-rays already
described by P1 and P2 that are not attenuated as they move from the scattering

point at r, ®, § to the detector.

P, = exp [—u; [sCr,0,0) = s, (r,0,0) 11! t;‘{ (3.1.1-7)

where p; is the total attenuation coefficient of the

atmosphere at gamma-ray energy Es’ in cm-l,

is the total attenuation coefficient of the space
vehicle wall at the gamma-ray energy Eg, in
-1
cm ,
s(r,0,§) 1is the distance from the scattering point at
r,®,y to the center of the detector face at

r=d, =0, § =0, in cm,

13



smin(r,®,¢) is the distance from the center of the detector
face to the intersection of the outer face
of the space vehicle wall along the s line,
in cm,
and t" is the distance the scattered gamma-ray of
energy ES must travel in the space vehicle
wall when traveling along the s line, in cm.
The fourth probability, PA’ is taken as those gamma rays already
described by P

P2, and P, that give rise to a detectable pulse. This probability

1’ 3
is identical to the detector efficiency model that is derived and discussed in
Sec. 3.1.5. It is not discussed further here,

The response of the gauge per unit total emission rate, R, is just

the integral over all possible limits of the product P1P2P3P4.

Ve Ppax Fmax
R=2 | f f P,P,P.P, (3.1.1-8)
° len rmin(@,w)

Keep in mind that P, contains the differentials dy and d® and P_ contains the

2

differential dr, A form of Eq. 3.1.1-8 that would look more conventional would be

1

qJc ®max rmax P1P2
R = 2 £ é £ EE—EETE; P3 P4 dy do dr .(3.1.1-9)
mi min(d,y)

Solutions of Eq. 3,1.1-9 were obtained by programming the finite

difference equivalent form for a digital computer, The finite difference form is

m n o]
R=2 % b3 % (P.P.P.P). (3.1.1-10)
=1 k=1 1=1 P2 3ESkL
where (P,P.P_.P,) is the product P.P_P_P, at the th increment on § the kEh
1°2737473,k,1 1727374

. th .,
increment on ®, and the 1= increment on r; and m,n, and o are the total number

of finite difference increments taken on {,d, and r, respectively.

14



For the case of the Martian atmosphere where the maximum expected
density is quite low compared to that on Earth, the exponential absorption factors
in the Pl and P3 probabilities due to atmospheric absorption could be neglected.
(For the most demse NASA Mars atmosphere model, VM-9, the exponential attenuation
on the surface of Mars amounted to less than 57 for a 10 Kev gamma ray and
approximately 17 for a 20 Kev gamma ray.) This simplified the model considerably
and significantly decreased the amount of computer time required per calculation,
These factors could easily be reinserted for calculations involving more dense
atmospheres.

The computer program of thig model was written in FORTRAN II
and run on the Bunker-Ramo 340. A calculation of the response for one set of
conditions took from 1 minute to 6 minutes depending on the number of integration
increments taken on the r, ®, and | variables,

3.1.2 Wall Streaming Résponse Model

The earlier studies have determined (3,4) that one of the major
sources of noise has been the streaming or multiple scattering of gamma rays down
the vehicle skin and into the detector. Consequently, the signal response model
described in subsection 3.,1.1 was modified to include initial scattering down the
wall and subsequent scattering from the wall into the detector,

The significant changes to. the model described in Sec, 3,1.1
are: (1) the P1 probability given by Eq. (3.1.1-1) does not include an attenuation
term since the integration on r is done only to the outer surface of the rocket

wall, (2) the P, probability given by Eq. (3.1l.1-4) substitutes a term for fg

2

dr F that describes the fractional amount of the solid angle between 91 and 92

that is intercepted by the vehicle wall and that includes the electron demnsity of

the wall instead of the atmosphere, (3) the P, probability is the exponential

3
attenuation of the wall from the original scattering point in the wall at r, ®

and § to a point in the wall adjacent to the detector (second scattering point),

15



P
4 1> "2
and P3 that are scattered within the differential distance ds and mean distance

s to within the solid angles subtended by the detector (P4 is identical to P

(4) the P, probability is taken as those gamma rays already described by P

2

except that the solid angle and differential distance are different. The solid

angle is again the F term given in Eq. (3.1l.1-4).), and (5) the P5

again the efficiency or probability that the detector will detect the intercepted

probability is

gamma ray at the second scatter energy.

The P4 probability is the most complicated one in this model
since at least 4 scattering points for each original scatter point are calculated,
A square area of skin 1,5 times the detector diameter was considered for the second
scatter points, This area was divided into an even number of smaller square areas
of equal size, The center of each of these smaller areas was the second scatter
point and was similar to a point source of radiation since it represented the
entire area which was used to determine the solid angle subtended between the first
and second scatter points., The total contribution was then determined by summing
the results from each of the second scatter points, The computer program for this
model was written so that either 4 or 16 second scatter points could be assumed,
This could be changed if it were found necessary to add more scatter points.
However, it was found that changing from 4 to 16 second scatter points did not
substantially change the final results but did require more computer time;

The Monte Carlo study discussed in the Introduction for predicting
the wall streaming buildup factor resulted in the conclusion that the Monte Carlo
technique would be feasible but time did not permit writing a complete Monte Carlo
computer code, However, several variance reduction techniques were developed
during this work which substantially improved the statistics of this technique.

It was originally found that only one gamma ray out of every 109 source gamma rays
reached the detector, Since this was prohibitively time consuming on a computer,
methods of improving the statistics were developed. This work could be developed

into a Monte Carlo computer code if desired.
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The computer program of this model was again written in FORTRAN II
and run on the Bunker-Ramo 340, The computation time was usually less than that of
the signal response model because there was only one increment on r. However,
there were additional second scatter calculations but the latter calculations were
not as time consuming as the former.

3.1.3 Cosmic Radiation Model

One of the sources of radiation that contributes to the noise
in a gamma-ray atmospheric density gauge is galactic cosmic radiation, For this
' (7)

model, the cosmic ray spectrum reported by Giannini was used, or extrapolated

to include the range of energies applicable for this study. Figure 5.0-1 of
Reference 7 gives the cosmic ray spectrum from 1 to 1010 Bev, This figure was
extrapolated down to 0,010 Mev for this model,

Giannini reported that the cosmic ray flux is believed to be
constant between Earth and Mars since the rays originate far outside the solar
system, This same assumption was used in the present study.

The equation for the extrapolated cosmiec proton intensity

spectrum was found to be:

1.283

N (E) = 8.3 x 10-5 E particles/cmg-sec - Mev (3.1.3-1)

where E is cosmic ray energy in Mev,
Then, N(E) dE = number of protons per second with energies in dE about E striking
each cm2 of the detector. This spectrum was normalized to 1 between 10 Kev and

1000 Mev.

Expressed as an equation,

E = 1000

N(E) dE = 1 (3.1.3-2)

E= 0,010
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An expression for the range-energy relationship for cosmic protons in the vehicle
wall material was obtained by using values from Fig, 3.3 in Chapter 22 of Evans(s)
for high energy protons in air. This expression is:

r , =22.2 E -~ 107.5 cm

air (3.1.3-3)

where E is emergy in Mev.

The Bragg-Kleeman rule which relates the average range in one

absorber to the range in any other absorber gives

_ -4
r, = 3.2x 10 A r | (3,1,3-4)

Py

where AW is effective atomic weight of wall material
. . . . 3
and e, is wall material density, in g/cm .
For absorbers other than pure elements, the ratio of the effective atomic weights

to the effective stopping power must be used for the AW term, This is obtained

by the following formula:

n, A_+n, A +n, A, F eeoo

M T Sy A W
VA =
Y on WA+ 0, B, + 0y VB, F ... (3.1.3-5)

where the n's refer to the atomic fractions of the elements in
question,

Substituting the expression for the range in air into Eq. (3.1.3-4) gives

-4
3.2 x 10 " NA_ [22.2F - 107.5] o (3.1.3-6)
r -—

w pw
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where VAW is defined by Eq. (3.1.3-5),
The lowest energy E to give a pulse is found by first solving
Eq. (3.1.3-6) for Ew (the energy required to pass through the wall) with r, equal

to the wall thickness, tw' The resulting equation is

t o
. - w W — + 107.5 Mev (3.1.3-7)
(22.2) (3.2 x 10 JK; )

E 22,2

where tW is wall thickness, in cm.,

The additional energy required to give a pulse as large as the lower discriminator

is

setting Ez

Ea =Ez/y Mev

where y is relative energy efficiency of protons compared

to gamma rays

y = 5/7.3 = 0,685 for Nal crystal.

Therefore, the lowest energy proton that will give rise to a pulse is

E = Ea + EW ° (30 1-3-8)

Pi

Next, the highest energy that will give a pulse is

E, =E'+E
a w

Pu (3.1.3-9)

where E; is additional emergy required to give a pulse as large as
Eu’ the upper discriminator setting
T =
or E!=E/5.

Now to get the total number of protons detected

Pu
N(E) dE particles/sec (3.1.3-10)

=4

1]

Z
e o

Py
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where Nc is total cosmic ray flux, in particles/cmzlsec° For
purposes of this study Nc was assumed to be equal to 2, However, any value other
than this may be used readily because this value ﬁas read into the computer
program for this model, The model was programmed in FORTRAN II and took only
fractions of a second on the Bunker-Ramo 340 computer.

3.1.4 Model of Response Directly Transmitted from Source

Another source of background counting rates is the penetration of
gamma rays through the tungsten shield placed between the source and the detector,
To evaluate this effect the source, shield, and detector configuration shown in
Fig. 2~2 was used. This configuration assumed a point isotropic source of
radiation and the tungsten shield was divided into two parts.

As stated in Section 2, one of the criterion for optimizing a
gamma-ray scatter gauge is minimum shield weight. The shield is divided into
two parts to effectively attenuate both the source radiation and scattered
radiation with a minimum shield, The source shield which is directly adjacent to
the source attenuates the radiation before it has had a chance to spread out or
scatter in the atmosphere. Also, as can be seen in Fig. 2-2 shielding placed at
this location requires much less volume for a given radius than at any other
location. The detector shield attenuates any radiation that may penetrate the
side of the detector plus any lower energy radiation that was scattered by vehicle
components or in thé source shield,

In this model the shield was assumed to be tungsten because
of its excellent gamma-ray shielding characteristics and also because this was
the shield material in the earlier flight tests., With the known density of
tungsten and for any given shield weight, the volume of shielding is just the
weight divided by the density. The volume was then divided into two parts for
the source and detector shields. A factor or ratio of source volume to total

volume determined how the shielding was placed.
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The radius of shielding for the source shield is given by

r ==t cm (3.1.4-1)

where v, is volume of source shield, in cms;
R is detector radius, in cm,
and t is detector thickness, in cm.
The width of the detector shield is given by
Y2

X3 = Rt cm (3.1.4-2)
where v, is volume of detector shield, in cnp’
and R and t are as defined above.

The direct transmission through the shields is composed of two
parts, attenuation and buildup in the shield. Exponential attenuation in the two

shields is given by

-\ (rl + X.)
a =e ° 3 (3.1.4-3)
where At is the attenuation factor
Mg is the total attenuation coefficient of the
shield, in cm-l,
and r1 and X3 are as defined earlier.

The Mg term is similar to the My term in Eq. (3.1.1-2) and is given by
g = Ot T cm T, (3.1.4-4)
where o is the total Compton scattering probability
in the shield, in cm-l,

and T_ 1is the photoelectric effect probability

in the shield, in cmfl.
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The Gs term is computed exactly like the Compton scattering probability in
(Eq. 3.1.1-2) except that tungsten is used instead of constituents of the atmosphere.

The photoelectric effect probability was approximated by the empirical relation

T =a6&EP em L (3.1.4-5)

where a and b are empirical constants

and E is gamma-ray energy, in Mev,

The constants a and b were determined by taking known values of the photoelectric
cross sections at two energies and solving the resulting equations simultaneously.
The value for b was determined by using values above the K-edge only, The
constant a was found to be 0,3285 and b was -2.42,

The buildup factor was determined by using Chilton's %) two-

parameter formula for point-source buildup factors. This formula has the form

b, r
By=Lltayx, e b'b (3.1.4-6)

where ay and bb are empirical constants
and ry is the source-detector distance in the medium in mean

free paths,

The expression for r is
r, =o X (3.1.4-7)

where Oy is again the total Compton scattering probability,
in em R
and X3 ig thickness of detector shield, in cm.
The earlier experiments ) have shown that the only energies that are not completely
attenuated by the shield are the ones from high energy contaminants. Consequently,

the energies used in this model were from 0,7 Mev up to approximately 1.3 Mev,

Therefore, the photoelectric effect did not enter into this calculation. Also,
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because of the small thickness of source shield, the detector shield was the only
one used for the buildup part of the computation. The values for a and b were taken
from Chilton's article at 0.5 Mev for tungsten. This was assumed to be the most
representative energy for the contaminants,

The direct transmission was then found to be a cowbination of
the attenuation factor, buildup factor, source strength, and the solid angle.

Expressed as an equation

D, =B A S A tR counts/sec, (3.1.4-8)
17 % fe P M
(27D%)

where BP is buildup factor defined by Eq. (3.1.4-6),
A is attenuation factor defined by (3.1.4-3),
S 1is source strength, in disintegrations/sec,
t is detector thickness, in cm,
R is detector radius, in cm,
D is source-detector distance, in cm,

and Ab is abundance of the contaminant energy.

This model was programmed in FORTRAN II and run on the Bunker-

Ramo 340 computer. A set of computations took only fractions of a second.
3.1.5 Detector Efficiéncy Model

In the earlier discubsions of the signal response model and wall
streaming response model the final probabilities, P4 and P_, respectively, were seen
to be the detector efficiency or the probability that the gamma ray which intercepts
the detector will give rise to a measured pulse, This probability is a function
of the detector size and material, the gamma-ray energy, and the discriminator
settings on the electronics used to process the pulses from the detector. TFor a
given detector with fixed discriminator settings, this probability which will be

called P5 here is given by:

P5 = f£(E) (3.1.5-1)
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where f£(E) is a function of the gamma-ray energy.

Since the primary interest in this program is in the use of
scintillating crystals for detection, a generalized form of £(E) was derived for
this case., For a more detailed discussion of this model see Appendix A,

3.1.6 Detector Solid Angle Model

The detector in the signal response and wall streaming response
models was assumed to be a right cylindrical Nal (Tl) crystal. The circular detector
face subtended a solid angle which depended on the location of the detector in
relation to the scattered gamma rays. This physically corresponded to determining
the fractional number of gamma rays emitted from a point source that was intercepted
by the circular face of the detector,

(1D

Zumwalt treated this situation, but it was found that his
series solution did not converge rapidly for all detector positions. Consequently,
an alternate series solution that did converge rapidly for all detector positions
was developed. This alternate solution was easily programmed for a digital computer,
For a detailed discussion of this model see Appendix B.

The model discussed in Appendix B represented part of the F term
in Eq. (3.1l.1-4) and the equivalent equation in the wall streaming response model,

The remaining part of F was the total solid angle between the 6, and 6, angles as

2

defined in Eq. (3.l.1-4). Therefore F can be expressed as:

Q
F

= 7% (cos 91 - cos 92) (3.1.6=1)

where Q@ is given by Eq. (B-5)

and 91 and 92 are as defined in Eq. (3.1.1-4).
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3.2 Model Predictions

In this section model predictions for signal and wall streaming gauge
responses are presented for comparison with the two-~dimensional results obtained
previously. The purpose of obtaining these predictions is to determine if the
three~-dimensional models are accurate and to determine if any significant differences
between these models and the two-dimensional ones exist. To accomplish these
two objectives the following predictions‘have been made: (1) signal response to
atmospheric density, (2) signal response as a function of scattering distance,
(3) signal response to variations in atmospheric composition, (4) signal response
to shock wave density perturbations, and (5) signal and wall streaming response
to two wall materials and thicknesses as a function of gamma-ray source energy.
Unless otherwise stated the gauge dimensions used in the predictions are those
listed in Table 3-2 which are those expected for the Mars atmosphere density
sensor.

3.2,1 Signal Response to Atmospheric Density

The response of the signal predicted by the model outlined in
Section 3.,1.1 for the gauge dimensions given in Table 3-2 is linear with atmos-
pheric density over the maximum range of atmospheric densities expected on the
surface of Mars, This is obviously true since the attenuation of the gamma rays
for this atmospheric density range could be neglected (see Section 3.1.1), The
predicted signal responses as a function of altitude for NASA Models VM-8 and
VM-9 afe given in Fig. 3-3 for a source energy of 100 Kev and discriminator
settings of 65 and 115 Kev., These two models represent the maximum and minimum
densities expected on the surface of Mars., The atmospheric densities of these
models as a function of altitude are given in Fig. 3-4.

The fact that the predicted gauge response is linear with

atmospheric demsity allows one to significantly reduce the number of model
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calculations that are necessary in the study of the gamma-ray technique. The
result obtained at one density is easily converted to that at any other density
in the range of interest by multiplying by the ratio of the desired density to that
used in the calculation.
3.2.,2 Signal Response as a Function of Distance from Sensor

To illustrate the effective sample volume of the gamma-ray scatter~
gauge, the response as a function of distance from the source has been calculated. N
Figures 3-5A and 3-5B give the number of gamma rays that are scattered from any
point and are eventually detected out of 10,000 total gamma rays detected. The
gauge parameters used in this calculation are those given in Table 3-2 with a
source energy of 100 Kev, a detector efficiency equal to the total efficiency of a
2" x 2" NaI(Tl) crystal, and an atmospheric density of 2 x 10-5 g/cm3°

The maximum number of gamma rays detected are at a distance of
about 120 cm and the number detected approach zero asymptotically as distance is
increased. Since there is negligible attenuation by the atmosphere for the density
range of interest on the surface of Mars, the response as a function of distance
shown in Figs. 3-5A and 3~5B is independent of density. The response as a function
of distance would be expected to vary only slightly with other parameters such as
source-to-detector distance, source energy, and detector discriminator settings.

3.2.3 Signal Response to Variations in Atmospheric Composgition

(3

Previous studies indicated that the response of the gamma-ray
scatter gauge is affected significantly by variations in atmospheric composition
at a density equal to that at sea level on Earth when gamma-ray energies less than
about 100 Kev are employed. This effect is due to wvariations in the attenuation of
atmospheres of different composition which is caused primarily by variations in the
photoelectric effect interaction (complete absorption), Since the atmospheric

density likely to be encountered on Mars is much lower than that on Earth by a

factor of about 50, gamma~-ray attenuation by the atmosphere can be neglected. This
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means that there is no variation in gamma~ray scatter gauge response except that
small amount due to the slight variation in the ratio of atomic number to atomic
mass (Z/A).

In the case of the Mars atmosphere, this variation is at a
maximum value for the largest variation of argon percentage in the atmosphere since
the Z/A ratio for argon is most different from the other elements likely to be
found in the Mars atmosphere. The maximum effect is obtained by considering the
response to the NASA Model VM-6 Mars atmosphere in comparison to the NASA Model
VM-8 at the same densities. The difference between the two responses is 3.2%
which is just the difference in the average Z/A ratio. This is the maximum
effect to be expected in atmospheric density measurements on the surface of Mars.

3.2.4 Signal Response to Density Variations Induced by Shock Waves

The response of the gauma-ray backscatter gauge to shock wave
density perturbations was determined by using the signal response model to calculate
the response for two hypothetical shock waves representing the maximum shock wave
perturbation at two atmospheric density extremes. These responses are compared
to the response predicted when no shock wave is present, The density change of
the hypothetical shock waves was assumed to be of uniform thickness above the
spacecraft outer wall and of uniform density., For the low density case (atmos~

7'g/‘::mg') the shock wave standoff distance was taken

pheric density = 1.8 x 10
as 24 cm and the density behind a shock wave was taken as 1.1 x 10“'6 g/cm3 or
6.0 times higher than the ambient density. For the high density case (atmospheric

5

density = 2.6 x 10~ g/cm3) the shock wave standoff distance was taken as 120 cm

and the density behind the shock wave was taken as 1.0 x 10-4 g/cm3 or 3.86
times higher than the ambient density. The gauge parameters are as shown in
Table 3-2 with a source energy of 100 Kev and upper and lower discriminator

settings of 115 and 65 Kev, respectively.
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Three different source collimation angles were employed in the
calculations to study the effect of collimation on the variation of response
induced by shock wave density perturbations. The results of these calculations
are given in Table 3-4., They indicate that the effect of the shock wave density
perturbations is very significant for both hypothetical shock waves, They also
indicate that collimation of the source is somewhat effective in minimizing this
effect., However, a significant amount of total response is lost when collimation
is employed.

By stringently collimating both the source and detector so that
only gamma rays that scattered from outside of the shock wave could be detected,
one could (theoretically) completely eliminate the effect of shock wave density
perturbations. This is only true for atmospheric densities low enough so that
one may neglect attenuation, such as is the case on the surface of Mars. However,
such stringent collimation could only be accomplished with very large attendant
losses of total signal and with much heavier collimation shielding., An alternate
method of eliminating this effect might be to use two gauges simultaneously or to
use the mathematical models developed here in conjunction with other data known
about the entry path of the spacecraft.

3.2.5 ©Signal and Wall Streaming Response as a Function of Source Energy

Since the signal response is independent of atmospheric attenuation
it depends primarily on the Compton scattering cross section for a given gauge
configuration, The variation of the signal response as a function of source energy
is shown in Fig. 3-6. The signal responses given are for the gauge parameters
given in Table 3-2 with the detector efficiency taken as the total efficiency of a
2" x 2" NaI(Tl) crystal and the NASA Model VM~6 Mars atmosphere with a density of
1.8 x 10-7 g/cmB, These calculations are for the phenolic spacecraft wall
described in Table 3-2, The results are listed in Table 3-5,

The wall streaming response depends strongly on attenuation down

the spacecraft wall and on the wall thickness available for scattering. Therefore,
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the wall streaming response depends on the material composition, density, and thick-~
ness of the spacecraft wall. Calculations for the wall streaming for the two space-
craft walls described in Table 3-2 for the gauge parameters used in calculating the
signal response are listed in Table 3-6. The results for the phenolic wall are
plotted in Fig., 3-6 for comparison to the signal response,.

It is seen that the predicted signal response increases monotoni-
cally with decreasing source energy down to 10 Kev while the predicted wall stream-
ing response exhibits a maximum value at a source energy of about 1 Mev, This
seems to indicate that for a maximum signal-to-noise ratio, one would pick a source
energy as low as possible, However, it should be pointed out that there are
several complicating circumstances to this conclusion. One is that no discriminator
settings are used in these calculations, so it is not possible to ascertain the
effect that optimizing the discriminator settings would have on the signal-to-
noise ratio, Another consideration is that wall streaming is not the sole source
of noise., These factors are all highly interdependent and point out the need
for a multivariable search routine in optimizing the gauge configuration. It is
shown later in Section 4 that an optimum source energy occurs at 76 or 110 Rev
depending upon the source-to-detector digtance and other gauge parameters chosen.

3.3 Summary Discussion of Model Predictions

The three-dimensional model predictions given here are consistent with the

(3) (%)

two-dimensional models previously derived and experimentally verified o
These models must be assumed to be accurate based on this comparison. The primary
difference between these results and those obtained previously is due to the
different atmospheric density ranges being considered, 1In the present case the
maximum expected atmospheric density on Mars is about 50 times less dense than
that at sea level on Earth. This means that the attenuation of gamma rays to

and from the scattering point is megligible for a Mars atmospheric density sensor.

This means that the effect of atmospheric composition variations will be small.
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The most serious problem area indicated by calculations with the three-
dimensional models is the effect of density perturbations caused by shock waves.
Since attenuation is negligible in the density range of interest on Mars, one
could theoretically eliminate this effect by extreme collimation of the source
and detector. However, this amount of collimation would require greater shield
weights and a considerable loss of total signal, Two possibilities exist for
eliminating this effect other than by collimation: (1) the simultaneous use of
two gauges with different collimation designs and (2) the use of the mathematical
models developed here with additional information on the spacecraft entry path to
correct the effect by computation, These techniques have not been studied as
vet,

When discriminators are not employed and the controlling source of noise
is assumed to be wall streaming, the maximum signal-to-noise ratio would be
obtained at the lowest possible gamma-ray source energy. This simple analysis
neglects two important considerations. These are that the results of the
analysis change when: (1) optimum discriminator settings are employed, and
(2) wall streaming is not the controlling source of noise. An optimum source
energy of 76 or 110 Kev is found by the search routine described in Section 4,
This result demonstrates the need for a multivariable search routine capable of
handling the complex interrelationships of the parameters involved in optimizing
the gamma-ray sensor design,

A description of a master computer program to optimize the design of a
Mars atmosphere gauge and the results of the optimization design are given in the

next section,
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4, MULTIVARIABLE SEARCH ROUTINE

The final objective of the present study was to use computer programs to opti-
mize a gauge for imstallation on a.Mars atmosphere gauge. In a design optimization,
the design arrangement must be the first thing chosen, For this case this arrange-
ment was dictated by the Mars atmosphere gauge configuration, Secondly, the proper
function to be maximized (or minimized) must be selected., This was obviously the
signal-to-noise ratio for the gamma gauge,

Since there must be a marriage between the mathematical models and the
optimization technique, the choice of technique must be kept in mind while the
modeling is in progress. A small change in the model may permit use of a
quicker or more efficient optimization techniqﬁe. For this study the Rosenbrock(s)
technique for finding the greatest or least value of a function of several
variables was used, This technique and the master computer program for combining
it with the three-dimensional models are discussed in this section. The three--
dimensional models for signal and noise were discussed in Section 3 and therefore
are not discussed further here.

4,1. Master Optimization Program

The master computer program for optimizing the atmospheric density gauge
consisted of an input program, a setup subroutine for calling the Rosenbrock
search, the Rosenbrock ;ubroutine, a subroutine called by the Rosenbrock that
contains the function to be minimized, and subroutines for calculating the basic
signal, wall streaming, cosmic rays, direct transmigsion, efficiency, and one of
the solid angles subtended., These latter six subroutines were described in Section 3.
The relation of these subroutines and program to effect an optimization can be
explained best by again examining the schematic diagram of general mathematical
model optimizations shown in Fig. 2-1.

The constraints shown as (1) in the figure dictated the model

arrangements for certain cases and in others, controlling dimensions such as the

source-to-detector distance, gamma-ray energy, and minimum and maximum collimation
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angles in two planes were read into the input program, The setup subroutine
determined which parameters were adjustable for the case under consideration.
This is represented by (2) in Fig. 2-1. The Rosenbrock subroutine which is the
search routine of Fig. 2-1 was then called. This subroutine then used the
subroutine that contained the function to be minimized, or the value of criterion
in Fig. 2-1. The mathematical models, (3) in Fig. 2-1, were used by the value

of criterion subroutine to calculate each of the sources of noise. The noise was
then determined by summing the cosmic, direct, and wall streaming responses and the
ratio of this value to the signal was computed., This criterion was then compared
with the previous value and if it were smaller, the parameters were adjusted
further in the same manner as originally and the procedure was duplicated. This
procedure was continued until the new criterion was larger than the previous one
or until the noise-to=-signal ratio became negative which of course was physically
impossible, 1If the criterion were larger than the previous one, the program
adjusted the parameters in the opposite manner to effect a lower criterion. The
details of the adjustment of parameters and their limiting values are discussed
in subsection 4, 2.

For this study, nine variables were originally considered for
optimization., These variables were source-to-detector distance, detector radius
and thickness, upper and lower discriminator settings on the electronics, gamma-
ray energy, and minimum and maximum collimation angles in two planes. Later, it
was found that certain variables such as the collimation angles, detector size,
and gamma-ray energy were essentially fixed by design considerations, One example
of this principle was the selection of a radiation source which automatically
determined the gamma-ray energy. Gamma-ray energy, the presence of high-energy
contaminants, ease of manufacture, and cost were a few considerations that determined

which sources would be used. The most likely candidates were found to be Gd]'53

or Eu155 which both emit low gamma-ray energies, Thus one of the adjustable
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parameters was eliminated by this source selection. Reducing the number of
adjustable parameters simplified the computer program substantially because each
of the parameters was adjusted one at a time., The details of the Rosenbrock
technique and its manner of adjusting these parameters are given in the following
subsection,

After the parameters were adjusted until a minimum value of criterion
was found, the program selected the optimum values of parameters, (6) in Fig. 2-1,
which were the output of the program, These optimum parameters were used to
effect the optimum gauge for each of several different designs. In addition to
the optimized variables, certain other parameters such as shield weight, atmospheric
composition, and vehicle skin materials had to be studied to optimize the gauge
design. Shield weights of 500, 1000, and 2000 grams were used to determine the
optimum desigﬁ for each weight and from this the optimum weight., Atmospheric
composition and density were also varied in an effort to determine their effect on
an optimum gauge. Thus, for each fixed parameter, an optimum design was determined
and an examination of the various designs should determine the best parameters to
use,

4,2 Rosenbrock Search Technigue

The search routine that was used in the optimization program was the
automatic method of finding the greatest or least value of a function due to

(5)

Rosenbrock . This technique was developed for'ﬁse on a digital computer and
arose from a need to design chemical processes so that they produce the most
economical result., During the development of this work, Rosenbrock states that
over fifty different programs were run. The technique was incorporated into a
program for Mercury.

The primary merit of this technique is that of orthogonalizing the
space and rotsting the coordinates of the search to line up with a ridge. This

procedure eliminates most of the interactions between the design parameters and

effects excellent ridge following.
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The parameters are changed in turn, reducing the value of criterion
as far as possible with each variable and then passing on to the next. The
length of step to be taken in any desired direction, assuming this direction to
be known, was decided arbitrarily to be e. If this resulted in a success (i.e., lower
minimum) e was multiplied by ¢ > 1. If it failed, e was multiplied by a value
-B where 0 < B < 1. Therefore if e were initially so small that it made no change
in the criterion, it was increased on the next attempt. Each of the attempts will
be called a "trial".

The next problem was to decide when and how to change the directions
in which the steps e are taken. It was necessary to examine neighboring points in
each of n directions, in order to determine which is the best direction to
advance. In this technique it was decided to make one trial, of the kind described
above, in each of the n directions in turn., 'The method for determining the point at
which to compute new directions was to go on until at least one trial had been
successful in each direction, and one had failed.

The values for ¢ and B were determined by making a set of calculations
of 200 trials. Rosenbrock states that too great refinement is not justified since
the results must depend to some extent on the particular problem., Values of ¢ = 3
and B = 0.5 were originally tried; however, it was found that other values effected
a quicker convergence so that the final values used here were @ = 5 and B = 0.3,

One of the major problems in the Rosenbrock method is in the
application of limits on the real variables, This is shared with all methods
which use a transformed space. Rosenbrock recognized this difficulty and
attempted to overcome it by applying penalty factors. These penalty factors
created other difficulties which are not easily overcome,

The answer appears to be that limits must be tested and used in the space
where they apply. Any move that causes the criterion to exceed a preset limiting

value is an automatic failure. This technique has been used successfully with other
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search techniques, provides absolute bounding of the problem space, and eliminates
a computation of the performance index for each move which exceeds a boundary,

In the course of the present study, limits originally were put on several
of the variables. However, it was found that the éomputer would try another
direction and keep returning to the limits, Consequently, it would continue to go
around this ''loop" and would never output optimum parameters, This was handled
by removing the limits from the variables and letting the computer find the
optimum value regardless of its value. Then it was examined and if it were
physically impractical, this parameter was 'fixed" and the computer was then allowed
to search on the remaining variables.

An example of this exceeding of practical limits can be seen in
Table 4-1 where the source-to-detector distance was approximately 554 cm. This
was because of the low dénsity wall material which resulted in a high wall streaming
response, Therefore to reduce this streaming response and effect a minimum noise=
to~signal ratio the program pushed the source-to~detector distance variable to the
large 554 cm value, Tﬁe maximum allowable was stated by NASA to be 50 to 150 cm
so the variable was fixed at each of 50, 100, and 150 cm and the search was made
on the remaining variables,

The other major limit that was imposed in this study was to require the
noise~to-signal ratio to remain positive. If this ratio became negative (which it
did if the direction tried was effecting smaller minimums) the program was terminated.
This is one of the weaknesses of this study and could be overcome by going back and
changing the values of g and B to find more optimum results. The number of trials"
that were made in each of the design cases varied, but usually was around 25,

Another limitation of the Rosenbrock as with many other search routines
is that a function with only one maximum or minimum can be accurately optimized.
Points of inflection will result as the optimum value if the technique finds one.
Therefore the technique should be used only for smooth functions. One way of

checking to see if the "minimum" or "maximum,'is truly the real one is to start
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the variables at a low value and then at a high value. If they both converge to

i

the same point the result is accepted as a true minimum or maximum,

4.3 Optimization Results

As stated in Section 4.1 certain gauge parameters were found to be fixed
by spacecraft design considerations or by state-of-the~art development of the
gauge components, Included in this category are: spacecraft wall material and
thickness, total gauge weight and volume, the use of scintillation crystal-
photomultiplier detectors, and gauge performance characteristics such as required
response time and accuracy, The variable gauge design parameters that remain
include: (1) distance of source and detector from the wall, (2) source intensity,
(3) detector material, (4) detector diameter, (5) source collimation angles,

(6) detector collimation angles, (7) shield weight, (8) detector thickness,
(9) source energy, (10) source~to-detector distance, (11) lower discriminator setting,
and (12) upper discriminator setting.

Theoretically, one could search all of these twelve gauge design
parameters for the optimum gauge design. However, searching on twelve parameters
with the complexity of the mathematical models described in Section 3,1 would
require an inordinate amount of computer time, Some of the twelve gauge design
parameters are intuitively known to have only a slight effect on the gauge
performance and others are constrained by other practical limitations.

The first five of the twelve variable gauge design parameters were fixed
since they were not expected to significantly affect the gauge performance, The
distance of the source and detector to the spacecraft wall was fixed at 5 cm.
Increases in the source intensity would obviously improve the gauge performance
up to the point that the noise level is controlled by the source intensity. A
reasonable source intensity for the Mars atmospheric measurement appears to be
20 curies. Therefore, the source intemsity was fixed at this value., The

scintillation detector material was assumed to be NaI(Tl). For this study increases
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in detector diameter would tend to increase both the signal and the noise by propor-
tionate amounts. Therefore, the detector diameter was fixed at 4 inches. The
detector collimation angles would be expected to affect the gaﬂge performance, but
the amount of shielding necessary to accomplish any significant amount of
collimation would probably be prohibitive. Therefore, the detector was left
uncollimated for all predictions,

The effect of the next two gauge design parameters, detector collimation
and shield weight, can easily be examiﬁed by taking several discrete values of
each. It is useful to also examine wall material and‘thickness in this same way.
Even though these two parameters are fixed by the spacecraft design, the particular
design of the spacecraft wall (lamination of a thickness of phenolic heat shield
and a thickness of aluminum structure) could not be easily incorporated into the
mathematical models., It was therefore decided to examine the laminated thicknesses
separately to determine the effect of each lamination. Hopefully, one or the other
would control the gauge response or the gauge response would ﬁot be seriously
affected by the spacecraft wall.

This leaves five gauge design parameters that should be optimized,

These are: detector thickness
source energy
source-to-detector distance
lower discriminator setting
upper discriminator setting
The first series of computer runs held source eunergy constant at 100 Kev (this

value is appropriate to 153

Gd) and searched on the remaining four parameters for
various fixed values of wall material (phenolic or aluminum), wall thickness

(.3175 cm of aluminum, 0,762 cm of phenolic, and 1.08 cm of phenolic), shield
weight (2000, 1000; and 500 grams), and source collimation angles (+ 45° and + 30°).

The criterion for optimum gauge performance used was the minimum noise-to-signal

ratio, The results of this series of runs are given in Table 4-1.
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It became obvious in making this series of optimization runs that there
are two major disadvantages inherent to the Rosenbrock search routine for this
particular application. First of all, there are no limits on the variables being
searched so negative values are allowed. Secondly, the minimum values found
depended upon: (1) the search order, (2) the initial values given for each
variable, and (3) the values for ¢ and B which control the step size. To combat
these two problems and insure that the correct minima were being obtained, the
same search was made several times and the search order, initial values given,
and ¢ and B values were varied each time. The noise-to-signal ratio was printed
out each time and one could judge the best minimum value by examining this ratio for
each individual step, In this way negative values of the parameters could be ignored.
One modification of the program was made. This consisted of terminating the search
when a negative value was obtained.

In making the series of runs listed in Table 4-1 it was found that the
noise-to-signal ratio was quite insensitive to detector thickness, Detector
thicknesses of 0.6 cm or 1.6 cm gave the same noise-to-signal ratio to within
+ 2%. Therefore, in future runs this parameter was fixed at 0.6350 cm (1/4 inch).

The next interesting fact is that the direct transmission of gamma rays
is a negligible source of noise for all shield weights tried. 1In all cases where
the spacecraft wall material is phenolic resin, the source-to-detector distance

was increased to very large values to make the streaming of gamma rays down the

spacecraft wall negligible in relation to the amount of cosmic radiation detected.
When an aluminum wall was used the source-to-detector distance required to accomplish
this was decreased by an order of magnitude. This indicates that the controlling
wall material is the layer of phenolic resin. Therefore, subsequent runs used
one of two fixed values of phenolic wall thickness: 0,762 or 1.08 cm.

The effect of changing the collimation angles on the noise-to-signal

ratio was relatively small. The signal response is almost directly proportional
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to the total solid angle allowed by the collimation angles. The collimation
angles have about the same effect on the streaming of gamma rays down the
spacecraft wall. However, since this is a negligible source of noise in the
present series of runs, the collimation angles do not affect the total noise,
In subsequent runs the collimation angles were fixed at + 45°,

The optimum source-to-detector distances obtained were not compatible
with limitations impoéed by the spacecraft design and so three fixed realistic
values of this parameter were used in subsequent runs to examine the effect of
this parameter,

The first series of runs did not determine optimum source energy.

It is possible that the theoretical optimum source energy could be significantly
different from the 153Gd source with an average energy of 100 Kev, The next series
of runs was designed to determine the optimum source energy and corresponding

lower and upper discriminator settings for various fixed values of the parameters

that were found to be important in the first series of runs. These fixed values

of importance were source-~to-detector distances of 150, 100, and 50 cm; shield weights
of 2000, 1000, and 500 grams; phenolic resin wall thicknesses of 0,762 and 1,08 cm;
and detector thickness of 0,6350 cm, The results of this series of runs are given

in Table 4-2, |

In this second series of runs the controlling source of noise is the
streaming of gammé rays down the spacecraft wall. This is the case because
three, small fixed values of the source-to-detector distance have been employed
in this series of rumns. For the source—fo-detector distance of 150 cm, the
optimum source energy is 76.3 Kev while the optimum source energy is 110 Kev for
the two smaller source-to-detector distances of 100 and 50 cm. These results
indicate that the 100 Kev energy of the 153Gd source is very near optimum. It is

interesting to note that the optimum energy one would obtain by considering only
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the signal response and noise response with no discriminator settings would be at
about 15 Kev or less.

There arve two problems associated with these first two series of runs
that needed some further investigation., Probably the most important was that
the noise level due to phenomena other than the source-generated noise seemed too
low. Recall that the cosmic radiation background response was assumed to be
controlling in this general area of noise. Other sources of noise in this same
category would be electronic (primarily thermal emission at the photocathode) and
natural radioactivity in the surroundings. Both of these sources of noise, like
cosmic radiation, would be independent of the radioisotope source being used and,
therefore, independent of the source-to-detector distance.

The hypothesis that the non-source generated noise level is too low can
only be eventually determined by experimental results., However, the effect of a
higher noise level in this category can be ascertained by simply assuming a much
higher cosmic radiation flux, This means that a higher noise level by any source
of radiation in this category is being simulated by increasing the noise contribution
of the cosmic radiation, To accomplish this, the assumed particle flux was changed
from 2 to 12,350 protons per cm2 per second, This value of 12,350 was established
by obtaining the value required to obtain 30 counts per second for discriminator
settings of 0 and 2.5 Mev with the 0.6350 cm thick, 4 inch diameter NaI(Tl) detector.

The other problem is a conceptual one. It is probable that the noise-to-
signal ratio is not the best characteristic to minimize as a criterion for the
optimum gauge performance. Probably a better characteristic is the variance of the

atmospheric density measurement., This parameter is given by:

2
o (o) = [—jﬁJ @ (4.3-1)

where 62 (p) is the variance of the atmospheric density measurement, dp/dR is the

slope of the calibration curve, and 02 (R) is the wvariance of the measured counting
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rate, This last parameter is taken as:

& @®) = cé (R) + o§ (R) (4.3-2)

where oé (R) is the variance of the gross counting rate and og (R) is the variance
of the background counting rate, These component variances are taken as due solely
to the normal statistical fluctuations of signal and background (noise) for a fixed
observation time, Therefore, they represent the minimum attainable variances.

They are given by:

cé ®) = R, (4.3-3)
& ®) =Ry (403-4)

where RG is the gross counting rate (signal plus background) and RB is the back-
ground counting rate or noise, Since the high-altitude accuracy is of most
interest and is most crucial, Gé (R) is taken as RB and GZ(R) becomes 2 RB° (Note:
Other sources of error could be included here if desirable. TFor example, the
error due to shock-wave density perturbations could be included here. This is
not done here, since it is beyond the scope of the present contract.)

With these two changes a search of the four parameters source energy,
source~to~detector distance, iower discriminator setting, and upper discriminator
setting was made, The results of this search are given in Table 4-3, Note that
the source-to-detector distance ié reduced over the previous runs by a factor of
about two. This indicates that the level of the non-gource generated noise level
has a significant effect on the optimum source-to-detector distance. When
~experimental results are obtained on this noise level, more realistic optimum
values can probably be obtained for the source-to-detector distance.

The advantage of searching for a minimum variance is that the best

possible measurement accuracy is directly obtained since only the error due to
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statistical source fluctuations is considered., The measurement standard deviation
is just the square root of the variance.

Since the optimum source energy found was 106.4 Kev, the 153Gd source with
an average energy of 100 Kev should give quite good result;s° This was checked
with one final run fixing the source energy at 100 Kev and searching on the three
parameters source-to-detector distance and upper and lower discriminator settings.
The results of this run are given in Table 4-4 and indicate that, as expected, the
source energy of 100 Kev is essentially as good as the optimum of 106.4 Kev found

by the search routine,

4,4 Discussion of Results and Conclusions

The results of the optimization study indicate that this is a very
promising method of optimizing the gamma-ray atmospheric density sensor. When
experimental results become available so that realistic noise levels can be
established, the method should prove to be even more helpful in exactly establishing
the optimum design parameters., At this time further optimization studies should
await the experimental results necessary to establish the levels of the various
sources of noise,

The major findings of this study were: (1) optimum gauge performance
was quite insensitive to detector thickness, (2) the direct transmission of gamma
rays was a negligible source of noise under all conditions considered here,

(3) the material controlling the streaming of gamma rays down the spacecraft

wall was the low density phenolic heatshield for all conditions considered in

this study, (4) the effect of varying the collimation angles on the source was

about what would be predicted by taking the signal response as directly proportional
to the total solid angle subtended by the collimation angles, (5) the optimum

source energy for all conditions considered here was about 100 Kev, (6) the effect
of the non-source generated noise level on the optimum source-to-detector distance

was quite significant, (7) the optimum discriminator settings vary from 65 to
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106 Kev, and (8) the optimum gauge design gives a measurement standard deviation

of 0.530 x 10°° g/cm’.
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Fig. 2-1 Schematic diagram of mathematical model optimization procedure
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SIGNAL RESPONSE (counts/sec.)

Fig. 3-3

Pacy
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Results were obtained with model
described in Section 3,1.1 with
2 the parameters given in Table 3-2. ®
3x 10}~ Source strength was 20 curies with
' an energy of 0.100 Mev., Atmos-
pheric compositions are given in
Table 3-3, Detector efficiency was
total efficiency of a 2" x 2"
NaI(Tl) crystal. Source-to-
detector distance was 100 cm.
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Signal response as a function of altitude for the extremes of Mars

model atmospheres
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Fig. 3-4 Density as a function of altitude for the extremes of Mars model
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Fig. 3-5B Predicted signal response per 10,000 total units at various distances

from gauge

Results were obtained with model described in Section 3.1.1. Source

strength was 20 curies with energy of 0.100 Mev, Detector efficiency was
equal to total efficiency of a 2" x 2" NaI(Tl) crystal. Atmospheric density

was 2 x 10 g/cm3. Dimensions are given in Table 3-2.






Response (counts)

- CEDING PEGH BRANK

Signal

109

N

—°

*\

Wall Streaming /.,..—_\.

N

O.l

|

]

®

1] ! !

Lol

Signal results obtained with model
described in Section 3.1.1 and wall
streaming results obtained with model
described in Section 3.1.2.
are given in Table 3-2.
composition was that given in Table
3-3 for NASA Model VM-6.
efficiency was total efficiency of a
2" x 2" NaI(Tl) crystal.
strength was 20 curies and source-to-
detector distance was 100 cm.

Parameters
Atmospheric

Detector

Source

L1

.0l

Fig. 3-6

0.10

Energy, Mev

65

1.0

Signal and wall streaming responses as a function of gamma-ray energy

10.0.






LA NOT FILMED.
PRECEDING PAGE [LAnK NOT L

TABLES

67






AT

4
s

P l\C\_tU”\JG P

T+ 0 ues + 0,

300 uel
f 4

N

x

H+am

309 4+ @ Nuoo

i

A

h 300 0 uel 4+ ¢ Jued + A

I

ue 309 uel
H+am u+eN aN

A

AANLS STHL

0D

g soo I
® urs g uiIs 1 £
® s00. g UIs I X
me uis g ue3] _ uwe3 N% + 7 uts
T I- I 10
£
z £ x ]
e 4 + z + rANA) H..moo
— |
£ 4+ X
o A L
£ .
1 mu + mn.rm X
TVDIYHH4S NVISHIIVD

AGNLS STHLI NI (4SSN WIALSAS ALVNIMIO0D HHI

ANV “IVOTYAHAS ‘NVISALEVD NFAMIAY SJTHSNOIIVIAY

1-¢ @1qer

HLVNIJI00D

69






- oy AL
AT

?RECEDH%G P

Table 3-2

DESCRIPTION

wall-to-source distance
limit on r integration

wall thickness
wall density

wall composition

minimum limit on o

maximum limit on @

minimum limit on ¢
source~to-detector distance
detector thickness |
detector radius

source strength
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DIMENSIONS OF GAUGE FOR 3-DIMENSIONAL STUDIES

5.0
1000

+ 762
.3175

0.25
2,699

127
5%
100%
. 7854
2.356
. 7854
100
.635

5,08

o MOT i ER

DIMENS ION

cm

cm

cm (phenolic)
cm (aluminum)

3
g/cm_ (phenolic)
g/cm” (aluminum)

Si, 247 0, 59% C and
H (phenolic)
Al (aluminum)

radians (450)

radians (135°)

radians (450)

cm

cm

cm

20 curies

(7.4 x 10t*

v's/sec)
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Table 3-4

SIGNAL RESPONSE TO DENSITY VA%IATIONS

INDUCED BY SHOCK WAVES

SIGNAL RESPONSE FOR VARIOUS COLLIMATION ANGLES
FROM VERTICAL CENTERLINE OF SOURCE

Yo T O%min T Omax +30°
(counts/sec)
: _ -7 3
Response for p=1,8 x 10 ' g/cm 9.158

with no shock wave

Response for p=1.8 x 10—7 g/cm3 10,888
with 24 em shock wave

with p=1.1 x 10°° g/cu’

Error introduced by 24 cm 1.733 (18.9%)

shock wave

Response for p=2.6 x 10-5 g/cm3 1,320

with no shock wave

Response for p=2.6 x 10-5 g/cm3 2,773
with 120 cm shock wave

with p=1.0 x 10—4 g/cm3

Error introduced by 120 cm 1,453 (110%)

shock wave

+60°

(counts/sec)

29.05

34.48

5.43 (18.7%)

4,185

10,809

6,624 (158%)

+81°

(counts/sec)

41.97

66,12

24,15 (57.5%)
6,047

17,432

11,385 (188%)

The results given here were obtained with the signal response model described

in 8ec. 3.1.1 with the parameters given in Table 3-2.

In addition the gamma-ray

energy was taken as 0,100 Mev, the atmospheric composition was that given in Table
3-3 for NASA Model VM-8, the detector efficiency was taken as that for discriminator
settings of 65 and 115 Kev, the gamma-ray source strength was 20 curies, and the

source~to-detector distance was 100 cm,
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Table 3-5

SIGNAL RESPONSE AS A FUNCTION OF
GAMMA-RAY ENERGY FOR
NASA MODEL VM-6 MARS ATMOSPHERE*

GAMMA-RAY ENERGY SIGNAL RESPONSE

(Mev) TO MARS ATMOSPHERE

(0=1.80 x 10”7 g/cm3)
(counts/sec)
0,010 .2198 x 10%
0,020 .2198 x 10°
0.030 .1988 x 10°
0.040 .1879 x 10°
0.060 1691 x 10°
0.080 .1538 x 10°
0.100 L1412 x 10°
0.300 .7272 x 10°
0.500 .4599 x 10°
1.000 2445 x 10°

The results given here were obtained with the signal response model described
in Sec. 3.1.1 with the parameters given in Table 3~2 and the atmospheric composition
given in Table 3-3. In addition the detector efficiency was the total efficiency
of a 2" x 2" NaI(Tl) scintillation crystal, the gamma-ray source strength was
20 curies, and the source-to-detector distance was 100 cm. The wall was 0.50 cm
thick phenolic with a density of 0,50 g/cm3,
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Table 3~6

WALL~STREAMING RESPONSE AS A FUNCTION OF
GAMMA-RAY ENERGY FOR TWO WALL MATERIALS*

GAMMA-RAY ENERGY STREAMING RESPONSE STREAMING RESPONSE
(Mev) FOR PHENOLIC WALL FOR ALUMINUM WALL
(p=0.25 g/cm3) (p=2.699 g/cm3)
(counts/sec ) (counts/sec )
\ -16
0.040 0.3684 0.3447 x 10
0.070 0.4690 0.1085 x 10™ 1%
0.100 0.5615 0.1347 x 10° 3
0.200 0.8270 0.2812 x 10”1
0.300 1.0131 0.5750 x 10~ 0
0.500 1.2858 0.1790 x 10”2
0.700 1.4619 0.1270 x 10~/
1.000 1.5840 0.7440 x 10~/
2.000 1.4413 0.8883 x 1070
3.500 1.0029 0.2721 x 107>

The results given here were obtained with the wall streaming response model
described in Sec. 3.1.2 with the parameters given in Table 3-2. In addition
the detector efficiency was the total efficiency of a 2" x 2" Nal (Tl) scintillation
crystal, the gamma-ray source strength was 20 curies, and the source-to-detector
distance was 100 cm,

79






80anos Apa-emmed oy3 ¢ wo/8 _ 0T X 09°T
uaNel sem L8Bisua Lea wlme3 mmm uoTIIppe

‘umoys se a1e sisjsweled I1aylo syl pur ‘saTIND gz Sem ylduails
Jo 4£3TSusp ® YITM QT-HA TOPOK VSYN 103 ¢-¢ 9Tqel ur usail jeyy sem uorirsoduod orisydsowze aya ‘Asy 0QI‘'Q SB
ul *T°y °998 ul paqriosep weidoad zaindwod uorzezTWIldo I9ISEBW BYIF YITM PSUTRIGO II9M SISY UIATS §3INS2I Y]

o«oa&mmma. wIOwamHa. wnoaxmmmm. ¢|0waoaq. Noaxﬂwm.w 866.0° 9€090° 12419 05€9° 80°T OTTousYy4 S 00s
oIOﬂxmmmH. HNlOﬁxome. w:oaxmmmm. qnoaxwoﬁq. NOﬂwam.N 866.0° 9€090° A4 05€9° 801 STTouUsUd St 000T
oloaxmmma. mm|OH > w»oaxmnmm. ¢|0wacﬁ¢. Noaxﬂmm.w 866L0° 9€090° [AR439 05€9° 80°1T oTousyd ST 000z
nloaxmmmm. maoaxammﬁ. nloaxqm¢m. M|0ﬁxﬁmoo. moaxqaq.w 0TST" G66%0° 92°L9 650L" SLTE"0 WAUTWNTY Syt 00s
Nlo.ﬂxmumn. mu|0a&¢¢¢w. NlOﬁx¢N¢N. m|0ﬁxﬁmoo. moa%qﬁq.w 0TsT® 566%0° 9919 6S0L" SLTIE0 TNUTENTY Sh 000T
ntoaxmumm. mm|0ﬁ > mtOﬁxcch. mloaxﬁmoo. mOquaq.w 0TST®  S66%0° 99° L9 650L° GLIETO WOUTURTY Sht 0002
w|Omeooﬂ. wtoa&wmaa. m|0ﬂxﬁﬂno. QIOﬂanﬂm. Noaanm.ﬂ 866.0° 9£090° T°%5S 06€9° ¢9L70 2TTousyd 0€F 00s
®|0me00ﬁ. AN|OHMomwN. mnoaxaamo. quﬁx¢NHm. NOwamm.H 866L0° 9£090° T798S 0§€9° z9L°0 oTTousyd 0fF 0001
olOmeooH. mm|OH > m|OHxaﬁmo. ¢|0ﬁx¢mam. NOmemm.ﬁ 866L0° 9€090° A4 05€9° T9L°0 JFTousyd OFF 0002
ml0ﬂxmmoa. w!oﬁxwmaa. wIOﬁxomWH. ¢loax¢mﬁn. NOHmem.N 866.L0° 9€090° (48419 05€9° °9L°0 OTTOousYyd St 00S
oloaxmmOH. HN!OﬂwmmmN. wnoaxomwﬂ. «lOﬁxenHm. NOHNNmm.N 866L0° 9€090° 449 05€9° 29L°0 SFTousyd SoF 0001
oloﬂwmmOH. mmIOH > m:oaxomma. cucﬁxqmﬁm. NOHmem.N 866L0° 9€090° (48419 06€9° 29L°0 dFToudyd SoF 000z
(o@s/s3unod) (D9S/S3UNOD) (DIS/SIUNOD)  (I985/S3UNOD) (s0R) (G (uo) (uo) (u2) (soo18ep)- (swe1n)
8ur33es Surlgeg |OUBISTA 5
1eu8Ig/eSTON 39211Q weal1ls 2TES0) “2STIQ *OSTQ 1030939(q SSOUNOTYL SSOWIOTYL TEIIDIBK ¢ ‘ser8uy  IyStem
0TIy ®STON Teudrg zaddp I8M07  =-0I~32IN0§  1030933Q TIBM TTEM UOTIBWITTOD  PTATYS
SSTQETARA POXTJH

SOT1STA0]0€AEl) SBNEH POIEINOLE]

SONILIAS YOIVNIWIYOSIA ¥iddN ANV YIMOT

S31qETIE/, poyoiesg

NV ‘FONVISIQ YOILOIIHA-OI-ED¥NO0S SSANMDIHI YOIDAIAA 40 NOLIVZIWILAO ¥04 SITASIY

1-% 2148l

81






) 69+ 2aom sa7S8ue UOTIBWITTOD 3yl pue ‘WO 0GE9 'O
sdemT® Sem $SIUOTYI 1030938p 9YJ ‘ursal oypousud olsm STTEM TIV ‘-4 2TqE] UT UMOYS st SIiajswered 2wWes 2yl Y3ITM PIUTERIGO DIsMm 219y USATS SITnsal ayg

A H|oaxqmﬂ. Hﬂnoaxmaom. mOaxaqma. m|OmenHa. moaxmoq.o 00ST" 09.L0° 01T’ 0¢ 29L°0 00s
N HlOﬂw¢m«. mmloﬁxﬂumm. mOﬁxHQNH. m|OmeNﬁH. moaxmoq.o 00ST" 09LL0° 01T 0¢ 79470 000T
U Hloaxqma. mmloa > moawaqwﬂ. mooﬁxmnﬂﬁ. moaxmoq.o 00T 09240° 01T’ 0¢ 29470 0002
um Nloaxommﬂ. Ha;OﬁxNoNﬁ. Hoaxmmoq. mlOmenHH. moaxomq.m 00ST" 09.40° 011" 00T 79L°0 00§
w N|Oﬁxommﬂ. wmnoaxommﬁ. ﬂOHmeeq. mIOmenHH. moaxomc.m 00€T" 09440° o1tT” 00T 29L°0 000T
w NlOonmmH. mmloa > HOHmem¢. mloaxmnﬂﬁ. mOﬁxomq.m 00s1° 09L40° 011" 00T 79L°0 0002
muoaxmmam. Nﬂ|0ﬁn0Hmm. GOﬁxqwmo. qloaxw¢n¢. monANH.m ££90° 62S%0° €€9L0° 051 80°T 00s
mnoﬂxmmﬂm. mN|0HxNHmm. ooaxwmmm. qloaxwwmq. moaxana.m £L90° 67S%0° £€940° 0sT 80°1 000T
mnoawmmﬁm. mM|oa > OOquNwo. 4|0me¢mq. moaxﬂna.m £190° 67S%0° £€9L0° 0¢T1 80°T 0002
mnoaxnwOH. Nﬂloaxoaom. ooaxwﬁmm. qnoaxﬁuom. MOwaHmN.m LL90° 626%0° €€9L0° 08T Z29L°0 00s
mnoaxnwoa. mNsOAxNamm. oomx¢ﬁmm. qnoaxauom. moawamN.m L190° 625%0° €£9.0° 0ST 29L°0 0001
m:OHmeOﬂ. mm:oa > ooaxqﬂmm. ¢50ﬂxHNom. moaxwamm.m £L90° 62S%0° £€9L0° 0s1 79L°0 000¢
(028 /53Un0Y) (99s/s3uno02) (o@s/s3unoo) (o928 /s3Unod) (ARR) (22R) (83R) (wo) (uo) (suean)
8ut1398 Sut3398 A310uyg 9ouelSI(q
TeusTS /oSTON 399231Q weax1s DTWS0) *OSTQ *0SIQ @0anog 10310939Q SSOUNOTYUL 3y8tam
o138y @STON _ Teusdts xaddp Iamo wnutido ~03-301N0§ 1T8M PISTUS

S9T16T19]0BIBY) 08Ney Pale[nNoLe) EENCISECTNELEECER SS1QETIEp POXtd
SONILIAS MOLVNIWI¥OSIQ ¥dddn aNV ¥IMOT NV XO¥ENT 3D¥N0S 40 NOILVZIWILAO ¥04 SITNSHEd

¢-% S19ElL

83






Table 4-3

MIZATION RESULTS FOR SOURCE ENERGY, SOURCE-TO-DETECTOR DISTANCE,
AND LOWER AND UPPER DISCRIMINATOR SETTINGS

%ixed Variables

Shield Weight: 2000 grams
Collimation Angles: i+ 45°
"Wall Material: Phenolic

Wall Thickness: 0.762 cm
Detector Thickness: 0.6350 cm

./ Searched Variables

Source Energy: 106.4 Kev
Source-to-Detector Distance: 224.7 cm
Lower Discriminator Setting: 67,15 Kev

Upper Discriminator Setting: 83.50 Kev

Calculated Gauge Characteristics

Signal: 1,999 x lO3 counts/sec
Cosmic Noise: 0.1637 counts/sec
Streaming Noise: 0,05580 counts/sec

39

Direct Transmission Noise: <10 counts/sec

Variance: .2812 x 10-.16 gz/cm§

Standard Deviation: ,530 x 10—8 g/cm3

Note: The results given here were obtained by using the master
optimization computer program described in Sec, 4.1.
The parameters other than those listed are given in
Table 3-2,
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Table 4~4

OPTIMIZATION RESULTS FOR SOURCE-TO-DETECTOR DISTANCE AND
UPPER AND LOWER DISCRIMINATOR SETTINGS

Fixed Variables

Shield Weight: 2000 grams
Collimation Angles: + 45°

Wall Material: Phenolic

Wall Thickness: 0,762 em
Detector Thickness: 0.6350 cm

Source Energy: 100 Kev

Searched Variables

Source-to-Detector Distance: 247.9 cm
Lower Discriminator Setting: 65.86 Kev

Upper Discriminator Setting: 106.6 Kev

Calculated Gauge Characteristics

Signal: 12,2052 x 103 counts/sec

Cosmic Noise: 0.4073 counts/sec

Streaming Noise: 0,02397 counts/sec

Direct Transmission Noise: <10-3'9 counts/sec
Variance: .4541 x 10-16 gzlcm6

Standard Deviation: ,675 x 10-8 g/cm3

Note: The results given here were obtained by using the master
optimization computer program described in Sec. 4.1.
The parameters other than those listed are given in
Table 3-2.
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APPENDIX A

DETECTOR EFFICIENCY MODEL
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gREGEDING PACE

Scintillating crystals convert to a pulse of light a proportional amount
of that energy from a gamma-ray interaction that is imparted to the participating
electron. Both the photoelectric effect interaction which imparts all of the
gamma-ray energy to an electron and the Compton scattering interaction (or
multiple Compton scattering interactions) which can impart any energy up to a maxi-
mum dictated by the original energy of the gamma ray can occur in any single
interaction of a gamma ray with a scintillating crystal., A typical spectrum of
the light pulses that have been converted to voltage pulses (pulse-height
spectrum) from a monoenergetic source of gamma rays interacting with a scintilla-
ting crystal is shown in Fig. A~1. The photopeak and Compton continuum are
identified. The Compton continuum was divided into two parts, a rectangular area
and a triangular area as shown in Fig. A-~1l. The area under the total curve
(total number of pulses) divided by the number of gamma rays that intercepted the
detector is the total efficiency Et of the crystal for the particular gamma-ray

energy illustrated., The total efficiency of the crystal is given by

~1 g%
E . =1-e (a-1)

where by s the total attenuation coefficient of the
crystal, in cm-l,
and x is the effective detector thickness, in cm,
The Hy term is again similar to the H, term of Eq. (3,1.1-2) &nd the W, term of
Eq. (3.1.4~4), It is composed of the total Compton scattering probability in the
Nal crystal and the photoelectric effect probability in Nal. The Compton

probability was computed as usual and the photoelectric probability was computed

by the equation

T,=aE cm (A-2)
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where a and b are empirical constants

and E is the gamma-ray energy, in Mev,
The constants a and b were determined by taking values of the photoelectric
attenuation coefficients for NaI(Tl) crystals at two energies from Table 3.1 of

Crouthamel (10)

and solving the resulting equations simultaneously. The constant
a was found to be 0,0142 and b was -2,62,
The effective detector thickness x was taken as the distance through the

center of the detector intercepted by the scattered gamma ray. This thickness can

be expressed by the equation

t
x == cm (A-3)
- +
vy, & D) +y, taz
where t is detector thickness, in cm,
D is source~detector distance, in cm,

and X1s Yi» Zys 8TE coordinates of the scatter point, in cm.
In the signal response model X5 Y5 2 are coordinates of the one scatter for
each gamma ray and in the wall streaming response model these are the coordinates
of the second scatter point,
The fraction of the total area under the curve in Fig, A~1 that is in the
photopeak is called the photofraction, or peak-to-total ratio. This ratio can be

expressed as
prR=| 1Ie (A-4)

where c¢ 1is an empirical parameter
and Tae My and x are as defined earlier,
The parameter c was determined by plotting the experimental peak-to-total ratios

(10)

shown on page 336 of Crouthamel for a NaI(Tl) crystal versus energy and
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determining c¢ so that the computed peak-to-total ratios would fit this curve,

This parameter ¢ ‘was found to be of the form

c=a ebE (A-5)
where a and b are empirical parameters

and E is gamma-ray energy, in Mev,

The parameters a and b varied depending on the gamma-ray energy.
For this model the shape of the photopeak was taken as a normal (or Gaussian)

distribution with the resolution being computed by

Res =~No + B/E (A-6)

where & and § are constants
and E is gamma-ray energy, in Mev,
There are no units on Res when the energy is in Mev. The constants ¢ and B were

3 and 1.57 x 107

taken from Fig, 2-3 of Crouthamel 10 and were equal to 4.5 x 10”0
respectively. These values give a resolution of 8.3% for a 0.662 Mev gamma ray.
The Compton continuum was divided into two parts as discussed earlier with
the upper limit of the rectangular part being the maximum energy that can be
imparted to an electron by a gamma ray of tﬁe energy employed in one Compton
scattering interaction. This-maximum electron energy Tmax (c.f., Evans (8)) is

given by:

2
T - 2E

max 0,511 + 2E Mev _ (a-7)

Now the area under the total curve is equal to the total efficiency, or

A +A =E (A-8)

where Ap is the area under the photopeak portion of the spectrum
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and A is the area under the Compton continuum portion of the
c

spectrum,

But the peak-to-total ratio is given by:

PR=2 +4_° (A-9)
P ¢}

Therefore the area under the Compton continuum can be éomputed by:
Ac = Et (1 -PR) (A-10)

The height h of the Compton continuum can now be found by:

A

h = e - (a-11)
[Tmax + 0.50 (E -0.50 (E Tmax) Tmax)]

where T and E are in Mev,
max
The efficiency can be seen to be the sum of the areas in the Compton continuum and
the photopeak., With the equation given above, the efficiency for a given crystal
operated between any two energy discrimination levels for any gamma-ray energy can

be calculated,
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crystal and photomultiplier
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APPENDIX B

DETECTOR SOLID ANGLE MODEL
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Figure B-1 gives the pertinent nomenclature of the circular face of a
cylindrical detector with respect to the origin or the point source of radiation.

The differential angle subtended is given by:

! d
cos @' ¢ dr do (3-1)

d2

dQ =

By using appropriate geometrical identities and integrating from r = 0 to r = R,

one obtains

2

v n { . D pR cos ¢ + D2
Q = on _ do  (B-2)
J l(D2 -p2 cos2 o) ( D2 =P COSZ o) 4"2 + R + 20R cos ¢

Rearranging and integrating the first term of Eq. (B-2) gives:

40 (B=3)

Q = 21 -

T
2N g <(p/D)? J [ L+ (R/D) (p/D) cos © ]
V1 + ®/D)? v

1 [1- (p/D)2 cos2 61 "1+ b (p/D) cos &

By expanding the integrand of Eq. (B~3) in an infinite series and integrating

term by term, one obtains the solution:

¢ B p/D)

2m ] [ 1+5 x, (B-4)

i=1  *
N} 2
1 + (R/D)
2i L 24-1
where x; = {AZi - (R/D) AZi-l] (p/D) jzl TR
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k..
A=A _+b°5 1 ALl | (for k> 2)

k k-2 j=1 2j
A1 = 1/2b,
- 2
and A2 = 3/8b° + 1
. . . (11)
This is the solution given by Zumwalt .

For small solid angles it is obvious that the solution given by Eq. (B-4) would

1%

involve subtracting one large number from another, Assuming that one would want
to obtain this solution on a digital computer without having to use double
precision format, the solution given by Eq. (B-4) would not be accurate for solid
angles smaller than about 10—4. (This assumes that the computer carries six

significant figures). If ome tries to eliminate this problem by expanding

41 -p2/D2 ’ dl + R2/D2’ or both into a series, it is found that the expansions
are valid only for certain ranges of values of p/D and R/D. An alternate approach
to the problem is to derive another series solution of more appropriate form,
If rather than integrating the first term inside the intégral of Eq. (B-2)
it is combined with the second term and expanded in an infinite series, then one

obtains the alternate solution:

—

2t V1 - (p/D)? w

- -
Q — w5 w2 L * 151 y,) , (B-5)
1+ (R/D)
i i 251
where vy, = [ ~ 2 _.)B - % B c m -, (i>o)
i L+ RMY™ -1 7 Vgt =1 -4l jhi) g=1 2
B, = 1
c, = 1
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okep KTl 2j-1

j=1
(4k-5) ) s 5% 23m1
Ck = yXmE Fl ~0 R/D F1 jEl *53— , (k1)

_ 2.(s/D) (®/D)
1 + (R/D)?

and Fl

In this model it was found that the first five terms of Eq. (B-5) provided
reasonable accuracy. Therefore, this was programmed in FORTRAN II and run on the

Bunker-Ramo 340,
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Vp2+1242 pr cos ¢

Z I

$r
p r R
i
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. ]

6 Y
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P L%

Fig. B-1 Schematic drawing of solid angles subtended by a circle
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